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Abstract--An automatic method is used to determine the geometries of normal faults on depth-converted 
seismic reflection profiles from the Gulf of Mexico and from the North Sea. The general method has previously 
been tested on synthetic and sand-box data and assumes that the hanging wall deforms within the plane of section 
by a combination of arbitrarily inclined, bulk simple-sbear and differential compaction. The range of possible 
solutions is systematically investigated using inverse modelling. We assume that the fault surface does not 
significantly change shape during deformation. However, inversion of flexural forward models shows that when 
the fault surface does change shape, the misfit function at an automatically determined solution is unacceptably 
large and featureless. Consequently, spurious solutions, obtained when the principal assumptions break down, 
can be identified. The approximations used in modelling the effects of differential compaction are justified by a 
range of appropriate synthetic models. We reiterate that the inversion procedure is dependent upon careful 
identification of: (a) two or more deformed horizons within the hanging wall; and (b) the regional levels of 
deformed horizons before deformation. The numerical stability of the scheme is demonstrated by inverting 
synthetic data to which random and systematic noise have been added. The solutions we have obtained are good 
and indicate that the method works regardless of the scale and shape of the faults. Throughout, we emphasi'ze the 
importance of combining inverse theory with a simple kinematic model in order to investigate the solution space 
and the resolution of the model parameters obtained. 

INTRODUCTION 

THE arbitrarily inclined shear model proposed by White 
etal.  (1986) and now generally accepted (see e.g. Roberts 
et al. 1990), uses geometry of deformed hanging wall 
horizons to determine the geometry of fault surfaces at 
depth. This approach is appropriate since seismic reflec- 
tion profiling can accurately image hanging and footwall 
beds but is often poor at directly imaging fault surfaces at 
depth. Using the well-known techniques of inverse 
theory, Kerr & White (1992) tested this model on a large 
number of two-dimensional laboratory-modelled faults, 
showing that the main fault surface could always be 
determined automatically. This paper is concerned with 
applying the inverse model to listric and 'domino-style' 
normal faults imaged on seismic reflection profiles. 
Previously, it was argued that section-balancing schemes, 
similar to this one, are only applicable to surficial normal 
faults within the sediment fill of a basin (Roberts et al. 
1990). Here we demonstrate that, if allowance is made for 
rotations about the horizontal axis, the model is also 
applicable to major domino-style normal faults whose 
hanging walls may also be deforming internally. 

A full description of the model is given in White (1992) 
and Kerr & White (1992). The main assumptions are that: 
(a) the hanging wall deforms within the plane of the two- 
dimensional section by a combination of arbitrarily in- 
clined, bulk simple shear and differential compaction; (b) 
the fault stays the same shape as deformation proceeds; 
(c) the unfaulted geometry of two or more horizons are 
known; and (d) the fault portion between terminations 
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of hanging wall and footwall horizons is known. Defor- 
mation is described by three parameters: a, the inclina- 
tion of shear planes, measured with respect to the vertical 
(positive when antithetic to main fault); ~bo the porosity of 
sediments at the regional level of the uppermost horizon; 
and 2, the porosity decay length. These three parameters 
and the main fault surface are unknown, although bounds 
may sometimes be placed on their values. The correct 
fault shape and values for the deformation parameters 
are obtained by searching the solution space until the 
misfit between the faults predicted from each of the 
hanging wall horizons is minimized. 

In general, extension is not necessarily parallel to the 
plane of the section and so the assumption of plane strain 
may be incorrect. Kerr et al. (1993) have thus genera- 
lized the two-dimensional model and developed a three- 
dimensional procedure which can invert for the direc- 
tion of extension within the horizontal plane as well as 
the three-dimensional fault geometry. This model has 
been successfully tested on synthetic data, on a series of 
three-dimensional sand-box experiments, and on three- 
dimensional seismic reflection data (Kerr et al. in prep- 
aration). In instances where there has been oblique 
extension but where the fault surface does not change 
geometry dramatically along strike, the two- 
dimensional method used in this paper is able to deter- 
mine the correct fault surface (Kerr et al. 1993). 

Sand-box analogues of normal faulting provide a good 
initial test for section-balancing models. However, in 
applying the inversion scheme to geological faults, sev- 
eral complicating factors not present in sand-box models 
may lead to ambiguous results. Knowledge of circum- 
stances when the inversion scheme is likely to fail is of 
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great importance since it means that spurious solutions 
can be identified. Consequently, before the method is 
applied to seismic reflection data, a number of general 
complications must be considered. 

COMPLICATIONS 

Fault surface changing shape during deformation 

Listric faults on seismic reflections commonly show a 
deformed hanging wall and a relatively undeformed 
footwall. This observation gave rise to the assumption 
that the footwali remains rigid (i.e. the fault itself does 
not change shape) as extension proceeds (Wernicke & 
Burchfiel 1982, Bally 1983). 

Seismological studies of aftershocks of large- 
magnitude basement-extending normal faults demon- 
strates that some footwall deformation does occur and 
consequently the fault surface does change shape during 
deformation (Soufleris et al. 1982, King et al  1985. 
Lyon-Caen & Molnar 1986, Richins et al. 1987). How- 
ever, footwall deformation may not be very significant as 
the majority of aftershocks occur in the hanging wall 
rather than in the footwall and in any case the cumulat- 
ive seismic moment of all aftershocks is very small 
compared to that of the main shock (King et al. 1985). 

Geodetic measurements following the 1983 Borah 
Peak earthquake (Stein & Barrientos 1985) indicate that 
co-seismic deformation is accommodated by footwall 
uplift as well as hanging wall subsidence. It was also 
observed that uplift and subsidence decrease exponen- 
tially away from the fault. Similar observations. 
although less complete, have been made following other 
normal fault earthquakes. For example, geodetic pro- 
files for the 1928 Bulgaria earthquake (Jankhof 1945, 
Richter 1958), for the 1954 Fairview Peak earthquake 
(Whitten 1957), and for the 1959 Hegben Lake earth- 
quake (Myers & Hamilton 1964) all show a pattern of 
uplift and subsidence similar to the Borah Peak earth- 
quake. It is believed that a similar deformation field is 
produced by seismic slip on small faults. From these 
observations, Gibson et al. (1989) proposed a set of 
empirical relationships which could be used to model 
hanging wall subsidence and footwall uplift adjacent to a 
planar normal fault. However, this model is only appli- 
cable to faults in which co-seismic deformation has been 
the dominant deformation process since inter-seismic, 
and more importantly pre-seismic, phases of defor- 
mation are ignored. 

We have used a simplified version of the flexural 
cantilever model (Kusznir et al. 1991) in synthetic for- 
ward modelling to investigate how a fault surface which 
changes shape during extension will effect solutions 
obtained by inverse modelling. For our purposes, the 
significance of flexure is that it allows the fault surface to 
change shape during deformation. Reservations about 
general relevance of flexural models for matching the 
topography generated during the syn-rift phase of exten- 
sion are considered below. The flexural response is 

controlled primarily by the flexural rigidity of the plate, 
which is usually described as an effective elastic thick- 
ness. r e . The smaller the value of re, the more the fault 
surface changes shape during deformation. 

In Fig. 1, an initial planar fault and three horizontal 
beds are deformed by successive increments of 15 m of 
extension until 1.5 km of extension are achieved. In each 
increment, hanging wall deformation is modelled by a 
combination of inclined simple shear and differential 
compaction with a = 30 °, ~o = 45% and ;t = 2 km. The 
flexural response is calculated after each increment of 
displacement for a range of values of re (Figs. lb--d). The 
inverse model of Kerr & White (1992) is then applied to 
the final bed geometries, using Powell's method (Press et 
al. 1986) to locate the minimum misfit. In Fig. 2, the 
forward flexural model is applied to an initially listric 
fault with the deformation parameters set to the same 
values as before. 

It is clear that when the fault surface changes shape 
significantly during deformation, the predicted faults are 
not coincident and the misfit function is uniformly large. 
This failure highlights a very significant feature of the 
inversion scheme: if no adequate solution can be found 
(i.e. if the misfit function is uniformly large and feature- 
less), then inferences may be drawn concerning the 
underlying assumptions stated above. In this case, the 
fault surface has obviously changed shape significantly 
during deformation. Conversely, models which use the 
geometry of one or more horizons to forward model the 
solution without examining the shape of the misfit func- 
tion may yield misleading results. Note that at higher 
values of re, the fault surface still changes shape but now 
inversion produces adequate solutions. 

Differential compaction 

Normal faults typically occur within sediments where 
compaction is likely to be significant. As extension 
proceeds and more sediment is deposited, water is 
expelled and the resultant compaction can account for 
up to 30% of the total strain (Ramsay 1967). It has been 
suggested (e.g. Sclater & Christie 1980, Wood 1981) that 
compaction can be modelled empirically as a uniaxial 
process with a vertical axis of shortening, However, 
removing the effects of vertical compaction requires a 
priori knowledge of the fault geometry. Therefore the 
inverse model, in which the fault geometry is generally 
unknown, cannot be solved (Waltham 1990), The sim- 
plest approximation is to constrain the axis of shortening 
parallel to the direction of shear (White et al. 1986), 

It is important to determine how accurate this 
approximation is likely to be. To do so, we have pro- 
duced a forward model where compaction is modelled 
correctly (i.e. vertically; Fig. 3). Before deformation, 
the porosity, ~O(y), is calculated at regular intervals 
within the hanging wall using the following empirical 
relationship (e.g. Sclater & Christie 1980): 

g'(Y) = q~o exp(-y/it), (1) 

where y is the depth of a point below the regional level of 
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/ 
Fig. 3. Geometrical relationship for inclined simple shear and differ- 
ential compaction with axis of shortening vertical. Solid line is fault 
surface. Dashed line is regional level, R, of horizontal bed which is 
deformed by simple shear such that a is translated to c. Lengths labl 
and Icdl are equal. Hanging wall then compacted vertically. Length Icel 
shortens to [fe]. f is position of deformed bed. See text for further 

details. 

the uppermost  horizon, 2 is the porosity decay length, 
and ~o is the porosity at the regional level of the 
uppermost  horizon. The hanging wall is then extended 
by a small increment of the total extension and deformed 
by simple shear such that a point a initially at the 
regional level, R, is translated to c. The porosity of the 
material at c and the material vertically below it (i.e. 
between c and e) is smaller than that before the defor- 
mation occurred. The decrease in porosity with burial 
will result in length Icel shortening to ~¢e[. The amount of 
solid material between c and e is equivalent to the 
amount  of solid material between f and e. Thus 

(e - c)(1 - ~01) = (e - j 0 ( 1  - ~Oz), (2) 

where $1 is the average porosity between c and e, and ~b 2 
is the average porosity between f and e including the 
decrease in porosity due to burial by movement  on the 
fault. Hence equation (2) may be used to calculate f ,  the 
compacted position of the bed. The compacted bed is 
then deformed by further increments of the total exten- 
sion in the same way. This form of the forward model 
cannot be used to pose the inverse since the position of e 
is unknown (i.e. we cannot assume a priori information 
concerning fault geometry).  

Three  examples of vertical compaction forward 
models, each of which will subsequently be inverted, are 
shown in Fig. 4. Four  initially horizontal beds (Fig. 4a) 
are deformed by successive increments of 30 m of 
extension until an extension of 1.5 km is achieved. The 
value of a is increased by 15 °, in each forward model,  
from a = 15 ° in Fig. 4(b) to a = 45 ° in Fig. 4(d). ~b o = 
45% and 2 = 2 km in all the forward models. When the 
inverse procedure is applied, the solutions are excellent: 
in each case there is a close fit between the predicted 
faults and the actual fault surface. Hence,  although the 
axis of shortening is vertical in the forward model,  the 
inverse model is able to adequately represent defor- 
mation by modelling the axis of shortening parallel to 
the direction of shear. We see no need to model compac- 
tion in a more complex fashion at this stage. In future, 
regional estimates of q~o and ~. could be used to provide 
useful bounds for these parameters.  

An alternative method of forward modelling hanging 
wall deformation was proposed by Waltham (1990) 
in which the axis of shortening is constrained to be 
parallel to the main fault surface. The conservation of 
mass provides the main constraint which, for a flowing 

medium, requires that the equation of continuity (Birk- 
hoff 1955) is satisfied: 

v .  (pv) + ap = o. (3) 
at 

p is the density, v is vector velocity, and t is time. Given 
the directions of movement  at specified grid points, 
equation (3) may be solved for the magnitude of the 
velocity using a finite-difference scheme. Once displace- 
ment rates and directions have been found, deformation 
is calculated by summing displacements over appropri- 
ate increments of time. This scheme is the most general 
model for calculating hanging wall deformation. How- 
ever a consequence of such generality is that the inverse 
model,  which predicts fault geometry from hanging wall 
deformation, cannot be easily formulated. Also it seems 
unlikely that modelling compaction parallel to the fault 
surface is realistic since compaction must then cause a 
significant proportion of the displacement along the 
fault. 

Waltham's (1990) finite-difference scheme is used in 
Fig. 5 to generate three different hanging wall geom- 
etries. The initial bed and fault shapes in Fig. 5(a) are 
used and 1.5 km of extension is added with ~o = 45% 
and ;t = 2 km. As before,  the value of a is increased by 
15 ° in each forward model from a = 15 ° in Fig. 5(b) to a 
= 45 ° in Fig. 5(d). When these models are inverted, the 
deformation parameters located by Powell's method 
differ from the input values. However  the predicted 
fault surfaces all coincide with the true fault surface. 
Therefore  although a different mechanism of defor- 
mation was used in the forward model, once again the 
inverse model is able to adequately represent the defor- 
mation. 

Finally, we come to the problem of post-rift burial. 
This process must be considered since it affects most of 
seismic reflection examples used in this paper and in the 
literature. When burial occurs, both hanging and foot- 
wall strata undergo further compaction changing both 
the regional level of each horizon, the shape of the beds, 
and the shape of the fault. Rather  than altering the 
observed geometries by backstripping each section, we 
prefer to investigate directly the consequences of such 
burial using simple synthetic models where the same 
model is buried under an increasing mass of sediment 
(Fig. 6). Burial must cause a decrease in bed thickness 
and the geometry of the fault itself is also modified. 
However ,  burial is generally large and uniform (2-4 km 
with wavelengths of 10-100 km) and so the regional level 
of each bed suffers very little change in dip. Hence the 
four solutions calculated by inversion hardly differ. We 
have carried out similar tests on a wide range of fault and 
bed geometries and in all cases the results indicate that 
we are justified in ignoring the affects of post-rift burial. 

Resolution of  deformed hanging wall horizons 

Accurate interpretation of stratigraphy on seismic 
reflection profiles is not always straightforward. Hori- 
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(a) 2 ~. .  1~, (b) a ~  

a=30" $.=42g ;~=2 km. a=,30 ° ~.--44g ;~=2 km 

(C) 5% (d) 10% 

a=31" ~.--46~ ~,=2 kin. a=32" ~.=49~. ;~=2 km 

Fig. 7. Random noise added to synthetic data generated with a = 30 °, 
~o = 45%, 2 = 2 kin. (a)-(d) Maximum amount of noise (indicated 
above figures) is a percentage of vertical distance between top and 
bottom of fault (range). Solutions and predicted fault surfaces shown 

as before (see Fig. 1). 

zons are often disrupted by minor faults making corre- 
lation difficult. Here the effect that such interpretational 
error has on the inversion model is investigated in two 
ways. First, random noise is added to the deformed 
hanging wall horizons. Secondly, regional levels of de- 
formed hanging wall horizons are systematically dis- 
placed. 

(a) Random noise. The inversion scheme requires that 
deformed hanging wall horizons are accurately inter- 
preted and digitized. We can examine the effects that 
random noise has by adding it to synthetic models which 
are then inverted. In Fig. 7, synthetic data was generated 
by the forward model with a = 30 °, ~b o = 45% and 2 = 2 
km. The maximum amount of noise is determined as a 
percentage of the range of the data (i.e. the vertical 
distance between the top and bottom of the fault). In the 
examples shown, a 1% error is equivalent to misplacing 
the horizon by 32 m. The solutions clearly show that the 
inversion procedure is stable to random noise. 

The possible range of parameter values obtained in 
the presence of random noise can be investigated by 
adding different random noise to the synthetic data 200 
times in order to generate 200 different hanging wall 
geometries. The maximum amount of noise added is 2% 
of the range (the same as Fig. 7b). Inverted solutions are 
plotted in parameter space and confidence limits 
assigned to parameter values extracted by inversion. 
This 'Boot-strap method' (Press et al. 1986) yields 
Monte Carlo estimates of the likely error for a given 
parameter set. A confidence region or interval summar- 
izes the probability distribution of errors in parameter 
estimation and is just that region of space that contains 
some percentage of the total probability distribution 
(Press et al. 1986). In our case, the 99% confidence 
region for each pair of parameters is small indicating that 
our inversion scheme is well-posed in the sense of Parker 
(1977) (Fig. 8). For planar faults, we find, as anticipated, 
that the constraint upon a is poor (see also Kerr & White 
1992). More formally, the directions and lengths of the 
principle axes of the circumscribed ellipses correspond 

to the eigenvectors and the reciprocals of the eigen- 
values of the Hessian matrix in the vicinity of the 
identified solution. 

(b) Systematic noise. We assume that the regional 
levels of each deformed hanging wall horizons can be 
correctly identified from the intersection of footwall 
horizons with the fault. In practice, the correlation of 
horizons from the hanging wall to the footwall can be 
difficult and it is important to know how sensitive the 
model is to systematic variation in regional level. Once 
again, synthetic modelling is used to investigate the effect 
that fixing incorrect regional levels has on the inversion 
scheme (Fig. 9). First, the forward model is run with 
a = 30 °, qOo = 45% and )1. = 2 km. Regional levels of all 
beds are then shifted systematically, as a percentage of 
the range, from their correct position. As before, a 1% 
error is equivalent to misplacing the regional level by 32 
m. Figure 9 demonstrates that to predict the correct fault 
trajectory the regional levels of the hanging wall horizons 
must be carefully identified. Significant error in regional 
level causes the predicted fault surface to dip incorrectly 
at depth. The difference between the predicted and true 
fault surface is greater when regional levels are fixed too 
deep. If, however, regional levels are fixed below their 
actual locations the predicted faults intersect the hanging 
wall strata. Such solutions are physically unrealistic and 
indicate that the correlation of horizons between the 
hanging wall and footwall is incorrect. 

If correlation from hanging wall to footwall is very 
poor and if the geometry of the fault is already known, 
then it is possible to turn the inverse problem around in 
order to determine stratal correlation as opposed to fault 
geometry. 

Rotating fault blocks and the flexure problem 

Normal faulting combined with a rigid-body rotation 
(known as 'domino-style' faulting) has been recognized 
in many regions of extensional tectonics (Ransome et al. 
1910, Proffett 1977, Le Pichon & Sibuet 1981). Usually, 
domino-style faults are assumed to be approximately 
planar (Le Pichon & Sibuet 1981, McKenzie & Jackson 
1983). Roberts et al. (1990) argue that since the footwall 
as well as the hanging wall has deformed the application 
of geometric section-balancing techniques to this style of 
faulting will result in incorrect fault geometries being 
predicted. 

Roberts & Yielding (1991) concede that a domino- 
type fault model, where all fault blocks rotate about a 
horizontal axis, may be appropriate for extensional 
sedimentary basins such as the North Sea. However, 
they point out that the domino model yields unsatisfac- 
tory solutions for deformation at basin margins since a 
marginal fault is the last fault in an array and so its 
footwall cannot remain static during deformation. In- 
stead of a domino-type model, Roberts & Yielding 
(1991) propose that the flexural-cantilever model (Kusz- 
nir et al. 1991) be used since it allows a unified treatment 
of both basinal and marginal faults. In contrast, we 
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confidence interval , -~, 99*/= confidence intental 
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• s.0oo 26:00o ~0oo mo0o\ - ~ &  V~.o0o 33.00o 34.o0o ~.o0o ~s:o0o ~;o0o =7.'ooo ~ . ~ ' ~ . ~ . ' 0 o o  ~'0oo ~:o0o 35.'o00 
i Tt 

O.NXl 

~ O %  ~ oooo 
(C) 5,000. 

../.,':.- 
:":" / 

o ~  

52000, 

50 000, 

36OOO 

Fig. 8. Three orthogonal sections of solution space which mutually intersect at location of values used in forward model 
(Fig. 7). Crosses indicate location of solutions found for 200 runs each with different random noise. Circumscribed ellipses 

delimit 99% confidence regions for each pair of parameters. 

argue that the rotational model applies even in the case 
of a basin-margin fault as long as the footwall deforms 
internally so as to permit  rigid-body rotation of the fault. 
In other words, the basin margin to a set of dominoes can 
itself be regarded as a 'soft '  domino across which tilting 
gradually decreases over  some distance appropriate to 
the thickness of the brittle upper  crust. 

Figure 10 shows how a flexural-cantilever model can 
be used to predict the observed shapes of tilted blocks in 
an extensional sedimentary basin. Kusznir et al. (1991) 

argue that this elastic model is an advance on the simple 
kinematic domino model principally because it avoids 
space problems at the basin margins. Note.  however,  
that an elastic model still predicts the rotation of normal 
faults, including the basin-bounding fault. In other 
words, the relationship between to, the rotation of each 
fault and e, the total extension, is almost identical to the 
relationship between ~o and e in the simpler domino 
scheme (Westaway & Kusznir 1993). Thus it is valid to 
treat all faults as having rotated by the same amount  and 

(8) 10% above (b) 5% =x~ve (C) 1% above 

= = 3 8  0 = 2 3 Z  ~,=lOkm. = = 3 1  0 = 4 3 Z  h=3km. = = 3 0  0"==48Z X=3km. 

==32 ¢==38= X=lkm. =.=32 0---48~ X=lkm ==37 O=50Z X=lkm. 
Fig. 9. Investigation of effects of systematic noise by varying the regional levels of each horizon as a percentage of the 
vertical distance between the top and bottom of the fault. Amount  of shift indicated above each figure. Solutions and 

predicted fault surfaces shown as before (Fig. l). 
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(a) 

6 krn extension 

(b) 20 km 

True Scale 

15 km extension 

30 km extension 

Fig. 10. Flexural cantilever models which illustrate the development 
of a series of tilted fault-bounded blocks (i.e. dominoes),  re = 5 km and 
dotted line indicates initial geometry of basin-bounding fault on left- 
hand side. Faults have an initial dip of 45 ° and are spaced at 15 km 
intervals. Note increasing block tilt and decreasing dip as extension 

increases, even for basin-bounding fault. 

so fault geometry can be calculated using pre-rift hori- 
zons by first unrotating the fault block to its pre-rift 
orientation. For planar faults, this model is exactly the 
same as the rigid-domino model but for non-planar 
faults the hanging wall must still deform internally and 
some other means must be used to predict this non- 
planar geometry. The flexural-cantilever model itself 
cannot be used to determine fault shape since one must 
assume, a priori, that faults have a given shape (planar, 
listric, etc.). 

The most serious difficulty with the flexural-cantilever 
model is that the shapes of tilted fault blocks within a 
basin can be fitted using markedly different rheological 
models, all of which satisfy equations which are bihar- 
monic in form (i.e. can be expressed as V4~//= 0 where ~p 
is a potential function; Malvern 1969). Thus syn-rift 
topography alone cannot be used to discriminate be- 
tween say, an elastic model and a viscous model. This 
fundamental drawback is analogous to that encountered 
when trying to determine the rheological properties of a 
subducting slab of oceanic lithosphere from bathymetric 
profiles of the trench and outer rise (e.g. De Bremaecker 
1977, Forsyth 1980). As a result, the elastic thickness, re, 
determined by applying the flexural-cantilever model 
has no physical meaning. The value usually ascribed to re 
is merely chosen to ensure that the blocks look as if they 
are tilted. Such tilting mimics a rigid body rotation but it 
is in fact an interference effect which becomes more 
apparent as re is lowered (Fig. 11). If the elastic 

(a) 
Te = 5 km 

20 km 

Te = 0.5 km XIO vertical exaggeration 

(b) 

Fig. I1. Flexural cantilever model which shows that tilting of a con- 
stant dip results from the interference effect between footwall uplift 
and hanging wall subsidence. This interference is clearly seen when 

is very small (e.g. 0.5 kin). 

thickness is smaller than that value which allows the 
blocks to rotate rigidly, then the fault-bounded blocks 
must deform by inhomogeneous vertical shear (West- 
away & Kusznir 1993). The apparent rotation of faults 
and blocks within such a deformation field is achieved by 
pervasive vertical shear. It is unclear to us how faults can 
be expected to take up significant displacement whilst 
simultaneously behaving as deforming passive markers. 

We are wary of using flexural or any other rheological 
model in this way. Instead, we favour a very simple 
kinematic scheme based upon the original domino 
model but modified to allow for internal deformation of 
each block by shearing and compaction. There are two 
important reasons for this approach. First, kinematic 
models based on simple physical principals can be ap- 
plied without having to make assumptions concerning 
the rheology of the crust and lithosphere. Secondly, we 
are interested in tackling the problem of three- 
dimensional finite deformation in basins and the simple 
model applied here has proved much easier to generalize 
for three dimensions (Kerr et al. 1993). 

APPLICATION TO SEISMIC REFLECTION 
PROFILES 

The examples discussed below were selected because 
in many cases the fault planes have been imaged at 
depth. All of them have been modelled by other workers 
using different models. The range of examples is not 
intended to be exhaustive but serves to illustrate how the 
model is applied. In general, we found that the calcu- 
lated faults agreed with the observed but that the three 
model parameters, especially the compaction para- 
meters, were often poorly resolved. 

Example 1 

This first example (Fig. 12), is a growth fault from 
offshore Louisiana (U.S.A.). Based on seismic charac- 
ter, Xiao & Suppe (1992) were able to correlate eight 
prominent reflectors across the fault and also interpret 
the likely location of the main fault surface. The main 
fault, on the time section, is listric in vertical section and 
footwall horizons are approximately horizontal. Xiao & 
Suppe (1992) converted the section to depth and used a 
rather complicated geometrical construction to forward 
model deformation by simple shear. They assume that 
the fault trajectory is known and do not investigate the 
parameter space. 

The inversion algorithm is only applied to depth- 
converted horizons 5-8 since the upper four have only 
been displaced by negligible amounts and so do not 
contribute significantly to the solution. The automati- 
cally determined minimum of the misfit function is 
located at a = 0 °, ~o = 0% and 2 = 1 km. The 
significance of ~o = 0% is not that the sediments have 
zero porosity but means that there are no features in the 
bed geometry which require differential compaction. 
Predicted fault surfaces and the fault surface interpreted 
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(a) 

.5 

I 

(b) 

(d) 

" ~ , ,  

° l o  ~o 

c~=O oo=45% ?,=]kin 

(c) 

~ o M~.. - 

" % " " .  ~ !', . 

cc=O ~=0% X=lkm 

e" 

X= 1 kin. ~,,=0% c~=O 

0 15 30 45 60 0 15 30 45 60 2 4 6 8 10 
~ ~ km. 

Fig. 12. (a) lntcrpreted, two-way timc, seismic reflection profile (Xiao & Suppe 1992) from offshore Louisiana, U.S.A. (b) 
& (c) Two inverse models of depth-converted horizons 5-8 in (a). Dotted lines indicate positions of calculated faults at the 
given parameter values. (d) Three orthogonal plots of misfit function positioned at solution (see text). In each case, the 
correct solution (i.e. the minimum value of misfit function) lies within lightest shaded area. Contour interval indicated at 

right-hand side of plots. Next two figures organized in similar fashion. 

ABOVE 2.000 

1.000- 2.O0O 
0.500 - 1 ~000 

0.200-  0.500 

0,170 - 0:200 

0.160-  0,170 

BELOW 0,160 

on the reflection section coincide. The misfit function is 
plot ted on three or thogonal  sections (Fig, 12d) located 
at the values of  c~, cp, and 2 found by the inversion 
scheme. These contour  plots illustrate the propert ies  of  
the misfit function a round  the solution, yielding infor- 
mation about  the pa ramete r  space which is more  import-  
ant than the actual solution itself. In this case, the 
min imum is well constrained by a but poorly constra ined 
by ¢o and 2. Figure t2(b)  shows that when the value of  
q~o is increased in the inverse model  to 45% the predicted 
fault surfaces have a very similar geomet ry  to that  they 
had when ¢o = 0%. Hence ,  as indicated on the contour  
plots, the inversion scheme is unable to tightly constrain 
the values of  q~,, and 2 mainly because the throw of  each 

horizon is small and very little differential compact ion  
has thus occurred.  

Example 2 

Figure 13(a) shows a listric growth fault f rom onshore  
southern  Louisiana,  U .S .A .  (Xiao & Suppe 1992). Only  
dep th-conver ted  horizons 3-6 are used in the inverse 
algori thm since horizons 1 and 2 have very small dis- 
placements.  A min imum of the misfit function is located 
at t~ = 0 °, ¢o  = 40% and 2 = 4 km. The  fault surfaces 
predicted at these values are similar to the fault surface 
interpreted on the reflection section (Fig. 13b). Con tou r  
plots (Fig. 13c) of  the misfit function a round  the located 
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(a) 
0 - , . , . , , ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . .  , , , , ,  . . . . . . .  " / 1 ~  
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U.S.A. (b) Inverse model of depth-converted horizons 3-6 in (a). Minimum of misfit function at a = 0 °, ~o = 40%, 2 = 4 

km. Calculated fault surface and misfit function (c) shown as before. 

solution indicate that the minimum is well constrained 
by a and badly constrained by the parameters which 
control compaction ~o and )!.. 

Example 3 

A well defined rollover structure, from the Mississippi 
Canyon (U.S.A.) ,  is shown on the seismic reflection 
section in Fig. 14(a) (Xiao & Suppe 1992). Xiao & Suppe 
(1992) are confident of the correlation of horizons 1-3 
from the hanging wall to footwall but were unable to 
correlate horizons 4-8. Consequently, since levels of 
horizons within the footwall are used to fix regional 
levels initially, only horizons 2 and 3 were used to 
determine fault geometry. Horizon 1 was not included 
since its displacement is very small, providing little 
constraint on the fault surface geometry. 

Examples I and 2 yielded solutions at a = 0 ° with little 
or no compaction which is equivalent to applying the 
'Chevron construction' (Verral11981). This may suggest 
that allowing the direction of shear to vary between 0 ° 
and 60 ° makes a simple method unnecessarily compli- 
cated and it would be sufficient to set a to zero for all 
applications of the inverse model. Figure 14(b) shows 
that calculated fault surfaces at a = 0 ° are not close to the 
interpreted surface and so blindly setting a to zero 
provides an unsatisfactory solution. 

The inversion scheme, which makes no a priori 
assumptions of the values of a, ~o and 2, automatically 
located a minimum of the misfit function at a = 50 °, q~o -- 
0% and 2 = 1 km. Contour plots of the misfit function 
around the solution (Fig. 14c) indicate that all three 
parameters are poorly constrained. It would therefore 
be appropriate to fix a to any value between 15 ° and 60 °. 
Predicted fault surfaces, at the solution given by Pow- 
eli's algorithm (a -- 50 °, ~o = 0% and 2 -- I km), are not 
close to the interpreted fault surface and cut the hanging 
wall stratigraphy (Fig. 14d). However  at a = 25 °, ~o = 
0% and)l. = 1 km predicted fault surfaces are close to the 
actual fault surface (Fig. 14e). Hence deformation can 
be adequately represented by arbitrarily inclined simple 
shear (a = 25 °) but the inversion scheme is unable to 
automatically identify the most appropriate value of a. 
Automatic inversion fails in this case because only two 
closely spaced beds are used and so, irrespective of the 
deformation parameters,  misfit between faults is always 
small. To obtain a better solution it is advantageous to 
sample more than two beds over a wider depth range. 

If the regional levels of horizons 4-8 are fixed just 
above the level of the horizons at the right end of the 
section, all interpreted horizons, excluding horizon 1, 
can be included in the inversion. Regional levels are 
fixed at this position in accordance with the gently 
dipping portion of the main fault at depth (Fig. 14g). A 
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Fig. 15. Depth-converted interpretation of the western portion of NNST-84-7, located at 61°N in North Sea, illustrating 
structure of East Shetland basin. Original seismic reflection data was generously provided by NOPEC and GECO. See 

White (1990) for further details. 

solution is located automatically at a = 26 °, q~o = 4% 
and 2 = 4 km. Contour plots of the misfit function 
indicate that the solution is now well constrained by both 
a and q~o and poorly constrained by2 (Fig. 14f). All fault 
surfaces calculated at the solution (Fig. 14g) are slightly 
shallower than the fault surface interpreted on the 
reflection section. It is possible that this discrepancy is 
due to errors in setting regional levels. However, in 
order to be confident of a solution, the three- 
dimensional method described by Kerr et al. (1993) 
should be applied to two-dimensional grids of seismic 
reflection data. 

Example 4 

All of the examples presented so far are of faults 
whose dips change considerably with depth. In this 
section, we show that the inversion model can also be 
applied to basement-extending normal faults which fre- 
quently involve rigid-body rotations about horizontal 
axes. The four examples shown here are from NNST-84- 
7, a seismic reflection profile which crosses the East 
Shetland basin of the northern North Sea from west to 
east at 61°N. This line is part of a survey shot by the 
Geophysical Company of Norway (GECO a.s) and 
Norwegian Petroleum Exploration Consultants 
(NOPEC a.s) in May 1984. It was interpreted and depth- 
converted by White (1990; refer to Fig. 15). 

Four tilted fault-bounded blocks from this line are 
modelled (Fig. 16). Middle and lower Jurassic horizons, 
whose regional levels are fixed at the intersection of 
footwall horizons and the fault surface, are inverted. 
Fault blocks A and B are not analysed since Jurassic 
sediments are completely eroded in their footwalls and 
so regional levels cannot be determined with sufficient 
accuracy. 

Fault geometries are calculated whilst allowing for 
differing amounts of anti-clockwise rotation. The misfit 
at the solution is generally smaller when an anti- 
clockwise rotation of 5-10 ° is allowed for (Fig. 16). With 
$G 16:124 

no rotation, the predicted fault surfaces are listric and 
intersect hanging wall strata. With 6 ° anti-clockwise 
rotation, the value of the misfit is significantly smaller, 
yielding approximately planar faults. A listric fault 
geometry is still predicted for fault D as inversion 
automatically located a minimum a = 58 ° which is most 
likely too high. At lower values of a the amount of misfit 
is almost the same as at a = 58 ° and the predicted fault 
surface is approximately planar, With an allowance for a 
10 ° rotation, the dip of the predicted fault surfaces 
increase. Therefore provided an anti-clockwise rotation 
of between 5 ° and 10 ° about a horizontal axis is allowed 
for, the inverse model is able to predict fault geometries 
which are consistent with what is thought to be the actual 
geometries of these faults (Yielding et al. 1991). 

We emphasize again that even though Powell's algor- 
ithm can yield ~o = 0%, this value does not imply that 
the sediments have no porosity. It simply means that 
very little differential compaction has occurred. Poor 
control on q~o results from the same reason. 

Example 5 

The next example is a major normal fault which 
separates the Tr¢ndelag Platform from the Halten Ter- 
race (mid-Norway rift; Fig. 17). Roberts & Yielding 
(1991) applied the flexural-cantilever model of Kusznir 
et al. (1991) to the main boundary fault in order to 
forward model the footwall deformation. They assumed 
that the fault was planar and that the footwall defor- 
mation could be modelled elastically, despite the fact 
that this region consists of planar strata which have been 
broken up by numerous small faults rather than having 
been deformed into an 'exponential' shape. Here we 
demonstrate that the arbitrarily inclined shear model 
can be used to determine the geometry of the main fault 
surface, provided rigid-body rotation about a horizontal 
axis is allowed for. The observed footwall deformation 
probably accommodates the required rigid-body ro- 
tation of the main fault. 
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Fig. 16. Results o f  inverse modelling for four of the normal faults shown in Fig. 15. (a) No allowance for block rotation 
about horizontal axes. Note large misfit and tistric faults which cut deep strata; (b) & (c) allowance made for increasing 
amounts of block rotation resulting in smaller misfits and approximately planar faults; (d) plots of misfit as a function of 

rotation for each modelled fault. 

Pre-rift Triassic and middle-lower Jurassic marker  
horizons are used in the inversion. Middle-lower Juras- 
sic sediments are not preserved in the footwall due to 
erosion following footwall uplift (Roberts  & Yielding 
1991). We infer the regional level of each bed by project- 
ing the fault surface upwards and placing the thicknesses 
of Jurassic sediments, observed in the hanging wall, on 
top of the ' intra '  Triassic horizon observed in the foot- 
wall. Figure 17(b) shows the misfit, at the solution, 
plotted against clockwise rotation. The minimum misfit 
is obtained with a rotation of 10 °. The fault surfaces 
predicted with a rotation of 0 °, 5 ° and 10 ° are shown, by 
the dotted lines, in Fig. 17(c). With a rotation of 10 ° 
predicted fault surfaces are planar with dips of approxi- 
mately 45 ° . This is consistent with the interpretation of 

Roberts  and Yielding (1991). Values of the three model 
parameters  are poorly resolved. 

Example 6 

Our final example comes from the Horda  platform, 
offshore Norway (Fig. 18a). Geometr ies  of the main 
fault surface and the horizons were interpreted,  
migrated and depth-converted by Yielding et al. (1991). 
The three upper  Jurassic horizons are used in the inver- 
sion scheme. The minimum misfit, at the solution, is 
obtained with no rotation (Fig. 15b). Figure 15(c) shows 
predicted fault surfaces, at the solutions, allowing for 
rotations of 0 °, 5 ° and 10 °. With no rotation the predicted 
fault surfaces are close to the interpretation of Yielding 
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parameter values for different amounts of clockwise rotation. All three parameters are very poorly constrained in this 

inversion. 

et al. (1991). Hence arbitrarily inclined simple shear is 
representative of hanging wall deformation. 

CONCLUSIONS 

The most important conclusion is that the arbitrarily 
inclined shear model is applicable to normal faults of any 

shape ranging from surficial listric faults to major 
'domino' style planar (?) faulting. Where rotations 
about horizontal axes have occurred and no allowance 
for such rotations have been made, then listric faults 
with large misfit values are predicted. Approximately 
planar faults with dips between 30 ° and 45 ° are predicted 
for domino style faults in the North Sea if the appropri- 
ate amount of rotation (5-10 ° ) is used. These results are 
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in accord with seismological studies of large-magnitude 
earthquakes in regions of active extension (Jackson 
1987). 

We have also investigated a variety of complications 
which may arise in applying the model to data in sedi- 
mentary basins. First, synthetic flexural modelling dem- 
onstrates that if fault surfaces change geometry relative 
to the hanging wall during deformation, the misfit func- 
tion has large values and is featureless in the vicinity of 
the automatically determined solution. Such negative 
results are very useful since they indicate that one or 
more of the underlying assumptions is invalid. Secondly, 
the forward model was adapted to model the axis of 
shortening for compaction both vertical and parallel to 
the fault surface. In both cases the inverse model,  which 
by necessity models the axis of shortening parallel to the 
direction of shear, was still able to adequately represent 
deformation and predict the correct fault surface. 
Hence,  contrary to the reservations of Waltham (1990), 
constraining compaction to be parallel to the direction of 
shear is an acceptable approximation. Thirdly, the 
effects of post-rift burial have been investigated and are 
shown to be negligible. 

We have also examined the effects of both random 
and systematic noise and have established empirically 
that the inversion procedure is well-posed (Parker 
1977). However,  care is required in defining the regional 
levels of the deformed hanging wall strata across the 
fault into the footwall. If regional levels are selected 

below their actual positions then the predicted faults will 
intersect the hanging wall strata. 

Throughout,  we have assumed that the regional dip 
of all horizons is zero (i.e. the beds are initially hori- 
zontal). When the beds have an initial dip the method 
can be simply adapted (White 1992). Oblique extension 
may have been significant in some of the example 
presented here. Consequently, to gain maximum confi- 
dence in a solution the three-dimensional method (Kerr 
et al. 1993, in preparation) should be applied. Inverse 
theory is used to determine both the three-dimensional 
fault geometry and the direction of extension within the 
horizontal plane. 
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